## IDENTIFICATION OF NEW MG-B-N-H COMPOUNDS IN THE $MG(BH_4)_2$ - $MG(NH_2)_2$ PHASES DIAGRAM

## Raphaël Janot<sup>a</sup>, Ronan Le Ruyet<sup>a</sup>, Benoit Fleutot<sup>a</sup>, Romain Berthelot<sup>b</sup>

<sup>a</sup> Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, UMR7314 CNRS, Amiens 80039, France

<sup>b</sup> Institut Charles Gerhardt (ICG), Université de Montpellier, UMR5253 CNRS, ENSCM, Montpellier 34095, France

e-mail: raphael.janot@u-picardie.fr

In a similar manner as the exploration of the LiBH<sub>4</sub>-LiNH<sub>2</sub> phases diagram revealing the existence of different Li-B-N-H phases able to release large amounts of hydrogen at moderated temperatures (>10 wt.% at  $250^{\circ}$ C for the Li<sub>3</sub>BN<sub>2</sub>H<sub>8</sub> composition), we have managed a similar study on the Mg(BH<sub>4</sub>)<sub>2</sub>-Mg(NH<sub>2</sub>)<sub>2</sub> system. The only compound reported so far in the literature was MgBH<sub>4</sub>NH<sub>2</sub>, for which a notable Mg<sup>2+</sup> ionic conductivity was measured (1x10<sup>-6</sup> S/cm at 150°C), whereas Mg<sup>2+</sup> conductivity in the solid state is usually very limited due to the strong polarising nature of the Mg<sup>2+</sup> cation.

Our work was targeting a systematic exploration of the  $Mg(BH_4)_2$ - $Mg(NH_2)_2$  phases diagram. Three new compounds have been identified, labelled  $\alpha$ ,  $\beta$  and  $\gamma$ , respectively. The  $\beta$  phase with  $Mg_3B_2N_4H_{16}$  composition is able to desorb 9.6 wt.% of hydrogen between 200 and 250°C, without significant  $NH_3$  contamination. A new  $\gamma$  phase with  $Mg_3B_4N_2H_{20}$  stoichiometry, thermally stable up to 250°C, shows a  $Mg^{2+}$  ionic conductivity of  $4.1x10^{-5}$  S/cm at 100°C, making this compound one of the solid materials with the highest  $Mg^{2+}$  conductivity. During the talk, the possible use of these solid  $Mg^{2+}$  ionic conductors as solid electrolyte for Mg-ion batteries will be discussed.

## References

R. Le Ruyet, R. Berthelot, E. Salager, P. Florian, B. Fleutot, R. Janot, J. Phys. Chem. C 2019, 123, 10756.

R. Le Ruyet, B. Fleutot, R. Berthelot, Y. Benabed, G. Hautier, Y. Filinchuk, R. Janot, ACS Applied Energy Mater. 2020, 3, 6093.



Dr Raphaël JANOT (CNRS researcher since 2005) is a specialist in energy storage materials. His recent research activities were focused on various types of carbon used as anode materials in metal-ion batteries, and on complex hydrides for reversible hydrogen storage. He is the author of more than 60 peer-reviewed articles, 6 patents, 3 book chapters and has been an invited speaker to 12 international conferences.