Aarhus University Seal



(* corresponding author)    

  • Y. Cheng, Q. Yang, J. Wang, T. Dimitriadis, M. Schumacher, H. Zhang, M. J. Müller, N. Amini, F. Yang, A. Schoekel, J. Pries, R. Mazzarello*, M. Wuttig*, H.-B. Yu* and S. Wei*. Highly tunable β-relaxation enables the tailoring of crystallization in phase-change materials. Nature Communications. 13, 7352 (2022).
  •   Q. Yang, S. Wei, Y. Yu, H.-R. Zhang, L. Gao, Q.-Z. Bu, N. Amini, Y.-D. Cheng, F. Yang, A. Schoekel, H.-B. Yu, Structural length-scale of β relaxation in metallic glass. J. Chem. Phys. 157, 184504 (2022).
  •    J. Pries, C. Stenz, L. Schäfer, A. Gutsche, S. Wei, P. Lucas, M. Wuttig, Resistance Drift Convergence and Inversion in Amorphous Phase Change Materials. Advanced Functional Materials. 32, 2207194 (2022).


(* corresponding author)    

  • *Lucas, Pierre; Martin, Steven W; Kieffer, John ; Poole, Peter H.; Wei, Shuai (2021). Charles Austen, 1933-2021. Journal of Non-Crystalline Solids, 568, https://doi.org/10.1016/j.jnoncrysol.2021.120869  
  • Persch, C., Müller, M. J., Yadav, A., Pries, J., Honné, N., Kerres, P., Wei, S., Tanaka, H., Fantini, P., Varesi, E., Pellizzer, F. & *Wuttig, M. (2021). The potential of chemical bonding to design crystallization and vitrification kineticsNature Communications12, [4978]. https://doi.org/10.1038/s41467-021-25258-3
  • *Pries, J., Sehringer, J. C., Wei, S., Lucas, P. & Wuttig, M. (2021). Glass transition of the phase change material AIST and its impact on crystallizationMaterials Science in Semiconductor Processing134, [105990]. https://doi.org/10.1016/j.mssp.2021.105990
  • Amini, N., Pries, J., Cheng, Y., Persch, C., Wuttig, M., Stolpe, M. & *Wei, S. (2021). Thermodynamics and kinetics of glassy and liquid phase-change materialsMaterials Science in Semiconductor Processing135, [106094]. https://doi.org/10.1016/j.mssp.2021.106094
  • Shi, J., *Ma, S., *Wei, S., Best, J. P., Stolpe, M. & Markert, B. (2021). Connecting structural defects to tensile failure in a 3D-printed fully-amorphous bulk metallic glassMaterials Science and Engineering A813, [141106]. https://doi.org/10.1016/j.msea.2021.141106
  • Pries, J., Yu, Y., Kerres, P., Haeser, M., Steinberg, S., Gladisch, F., Wei, S., Lucas, P. & *Wuttig, M. (2021). Approaching the Glass Transition Temperature of GeTe by Crystallizing Ge15Te85Physica Status Solidi. Rapid Research Letters15(3), [2000478]. https://doi.org/10.1002/pssr.202000478
  • Chen, E-Y., Peng, S-X., Peng, L., Di Michiel, M., Vaughan, G. B. M., *Yu, Y., Yu, H-B., Ruta, B., Wei, S. & *Liu, L., (2021).  Glass-forming ability correlated with the liquid-liquid transition in Pd42.5Ni42.5P15 alloy.  Scripta Materialia. 193, 117-121. https://doi.org/10.1016/j.scriptamat.2020.10.042 


(* corresponding author)    

  • Shi, J., *Ma, S., *Wei, S., Best, J. P., Stolpe, M., Beckmann, A., Mostafavi, S., Korte-Kerzel, S. & Markert, B. (2020). 3D pore structure characterization and hardness in a powder bed fusion-processed fully amorphous Zr-based bulk metallic glassMaterials Characterization162, [110178]https://doi.org/10.1016/j.matchar.2020.110178
  • Pries, J., Wei, S., Hoff, F., *Lucas, P. & Wuttig, M. (2020). Control of effective cooling rate upon magnetron sputter deposition of glassy Ge15Te85Scripta Materialia, 178, 223-226. https://doi.org/10.1016/j.scriptamat.2019.11.024
  • *Lucas, P., Wei, S. & Angell, C. A. (2020). Liquid-liquid phase transitions in glass-forming systems and their implications for memory technologyInternational Journal of Applied Glass Science, 11(2), 236-244. https://doi.org/10.1111/ijag.15109
  • Peng, S. X., Cheng, Y., Pries, J., *Wei, S., *Yu, H. B. & *Wuttig, M. (2020). Uncovering β-relaxations in amorphous phase-change materialsScience Advances6(2), [eaay6726]. https://doi.org/10.1126/sciadv.aay6726
  • *Wei, S., Persch, C., Stolpe, M., Evenson, Z., Coleman, G., Lucas, P. & *Wuttig, M. (2020). Violation of the Stokes–Einstein relation in Ge2Sb2Te5, GeTe, Ag4In3Sb67Te26, and Ge15Sb85, and its connection to fast crystallizationActa Materialia, 195, 491-500. https://doi.org/10.1016/j.actamat.2020.05.044


    (* corresponding author)    

    • *Zalden, P., Quirin, F., Schumacher, M., Siegel, J., Wei, S., Koc, A., Nicoul, M., Trigo, M., Andreasson, P., Enquist, H., Shu, M. J., Pardini, T., Chollet, M., Zhu, D., Lemke, H., Ronneberger, I., Larsson, J., Lindenberg, A. M., Fischer, H. E. ... Sokolowski-Tinten, K. (2019). Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materialsScience, 364(6445), 1062-1067. https://doi.org/10.1126/science.aaw1773
    • *Wei, S., *Lucas, P. & *Angell, C. A. (2019). Phase-change materials: The view from the liquid phase and the metallicity parameterMRS Bulletin, 44(9), 691-698. https://doi.org/10.1557/mrs.2019.207
    • Pries, J., Wei, S., *Wuttig, M. & Lucas, P. (2019). Switching between Crystallization from the Glassy and the Undercooled Liquid Phase in Phase Change Material Ge2Sb2Te5Advanced Materials, 31(39), [1900784]. https://doi.org/10.1002/adma.201900784

    Earlier publications

    (* corresponding author)

    • *Wei, S., Evenson, Z., Stolpe, M., Lucas, P. & *Angell, C. A. (2018). Breakdown of the Stokes-Einstein relation above the melting temperature in a liquid phase-change materialScience Advances, 4(11), [eaat8632]. https://doi.org/10.1126/sciadv.aat8632
    • Wei, S., Coleman, G. J., Lucas, P. & *Angell, C. A. (2017). Glass Transitions, Semiconductor-Metal Transitions, and Fragilities in Ge-V-Te (V=As, Sb) Liquid Alloys: The Difference One Element Can MakePhysical Review Applied, 7(3), [034035]. https://doi.org/10.1103/PhysRevApplied.7.034035
    • *Wei, S., Stolpe, M., Gross, O., Hembree, W., Hechler, S., Bednarcik, J., Busch, R. & Lucas, P. (2017). Structural evolution on medium-range-order during the fragile-strong transition in Ge15Te85Acta Materialia, 129, 259-267. https://doi.org/10.1016/j.actamat.2017.02.055
    • *Lucas, P., Coleman, G. J., Venkateswara Rao, M., Edwards, A. N., Devaadithya, C., Wei, S., Alsayoud, A. Q., Potter, B. G., Muralidharan, K. & Deymier, P. A. (2017). Structure of ZnCl2 Melt. Part II: Fragile-to-Strong Transition in a Tetrahedral LiquidJournal of Physical Chemistry B, 121(49), 11210-11218. https://doi.org/10.1021/acs.jpcb.7b10857
    • *Stolpe, M., Jonas, I., Wei, S., Evenson, Z., Hembree, W., Yang, F., Meyer, A. & Busch, R. (2016). Structural changes during a liquid-liquid transition in the deeply undercooled Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass forming meltPhysical Review B, 93(1), [014201]. https://doi.org/10.1103/PhysRevB.93.014201
    • Wei, S. (2015). Jumbled arrangement of atoms allows bulk metallic glasses to flow like honeyThe Conversationhttps://theconversation.com/jumbled-arrangement-of-atoms-allows-bulk-metallic-glasses-to-flow-like-honey-41011
    • *Wei, S., *Stolpe, M., Gross, O., Evenson, Z., Gallino, I., Hembree, W., Bednarcik, J., Kruzic, J. J. & Busch, R. (2015). Linking structure to fragility in bulk metallic glass-forming liquidsApplied Physics Letters, 106(18), [181901]. https://doi.org/10.1063/1.4919590
    • *Wei, S., Lucas, P. & Angell, C. A. (2015). Phase change alloy viscosities down to Tg using Adam-Gibbs-equation fittings to excess entropy data: A fragile-to-strong transitionJournal of Applied Physics, 118(3), [034903]. https://doi.org/10.1063/1.4926791
    • *Evenson, Z., Koschine, T., Wei, S., Gross, O., Bednarcik, J., Gallino, I., Kruzic, J. J., Rätzke, K., Faupel, F. & Busch, R. (2015). The effect of low-temperature structural relaxation on free volume and chemical short-range ordering in a Au49Cu26.9Si16.3Ag5.5Pd2.3 bulk metallic glassScripta Materialia, 103, 14-17. https://doi.org/10.1016/j.scriptamat.2015.02.026
    • *Evenson, Z., Naleway, S. E., Wei, S., Gross, O., Kruzic, J. J., Gallino, I., Possart, W., Stommel, M. & Busch, R. (2014). β relaxation and low-temperature aging in a Au-based bulk metallic glass: From elastic properties to atomic-scale structurePhysical Review B - Condensed Matter and Materials Physics, 89(17), [174204]. https://doi.org/10.1103/PhysRevB.89.174204
    • *Wei, S., Evenson, Z., Gallino, I. & Busch, R. (2014). The impact of fragility on the calorimetric glass transition in bulk metallic glassesIntermetallics, 55, 138-144. https://doi.org/10.1016/j.intermet.2014.07.018
    • Wei, S., Yang, F., Bednarcik, J., Kaban, I., Shuleshova, O., Meyer, A. & Busch, R. (2014). Two liquid states in a strong bulk metallic glass-former: A liquid transforms itself. Photon Science 2013: Highlights and Annual Report (Deutsches Elektronen-Synchrotron DESY) (s. 56-57)  https://photon-science.desy.de/sites/site_photonscience/content/e62/e176422/e187503/e249369/e249370/infoboxContent249371/PhotonScienceReport2013_eng.pdf  
    • *Wei, S., Yang, F., Bednarcik, J., Kaban, I., Shuleshova, O., Meyer, A. & Busch, R. (2013). Liquid-liquid transition in a strong bulk metallic glass-forming liquidNature Communications, 4, [2083]. https://doi.org/10.1038/ncomms3083
    • *Wei, S., Yang, F., Bednarcik, J., Kaban, I., Meyer, A. & Busch, R. (2013). Polyamorphous transformation in bulk metallic glass-forming liquid and its implication to strong liquids. AIP Conference Proceedings (Bind 1518). AIP conference proceedingshttps://doi.org/10.1063/1.4794577
    • Busch, R., Evenson, Z., Wei, S. & Gallino, I. (2013). Thermodynamics, kinetics and fragility of bulk metallic glass forming liquidsFragility of Glass-forming Liquids; Hindustan Book Agency. https://arxiv.org/pdf/1405.2251.pdf  
    • Wei, S., Gallino, I., Busch, R. & *Angell, C. A. (2011). Glass transition with decreasing correlation length during cooling of Fe50Co50 superlattice and strong liquids. Nature Physics, 7(2), 178-182. https://doi.org/10.1038/nphys1823