Aarhus University Seal / Aarhus Universitets segl

SurfLab

Surfaces - It's where the action is:

Kontakt

          

Interfaces play a deciding role in many aspects of modern chemistry and material science – catalysis, adhesion, sensing, nucleation are all processes driven by interfaces.

We use methods based on static and time-resolved sum frequency generation to probe the orientation, structure and dynamics of molecules at interfaces. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and microscopy are used as complementary tools to probe binding chemistry, surface distribution and molecular structure.

          

          

An important part of our research are protein structures at interfaces. Specific proteins can act as Nature’s engineers of both hard and soft tissue. Proteins can ‘sculpture’ biogenic minerals and shape cell membranes. The control interfacial proteins exert over biological surfaces has relevance for disciplines as diverse as cell biology, bio-sensor research, biomimetics and material science. We ask how proteins fold and move at surfaces and how energy flows through protein interfaces.

          

For technical applications we use chemical modification of surfaces to prevent biofouling and scaling and to reduce friction. The approaches we use are inspired by our studies of the surface chemistry of animals. Can we fabricate self-cleaning surfaces like plants? Stick to walls like a spider? Glue like a frog tongue?

The goal of our research is to understand how molecules operate at surfaces and how we can control interfacial processes at the molecular level.

          


Nyheder fra SurfLab

          

June 2022 - Paper in Langmuir

SurfLab researchers, together with an international team of collaborators, have published a paper in Langmuir entitled “Peptide Mimic of the Marine Sponge Protein Silicatein Fabricates Ultrathin Nanosheets of Silicon Dioxide and Titanium Dioxide”.

The paper uses a range of surface specific techniques to explore the formation of nanometer thin and stable sheets of silicon dioxide and titanium dioxide catalyzed by a marine sponge mimicking peptide.


February 2022 - Article series - Biointerfaces

James Pickering and SurfLab researchers publishes an article series “Tutorials in Vibrational Sum Frequency Generation Spectroscopy” in special topic collection of Biointerfaces.

The three papers take you through the fundamentals of SFG, building your first SFG setup and data treatment/analysis with accessible explanations targeted at people without strong formal backgrounds in mathematics or physics.

Tutorials in Vibrational Sum Frequency Generation Spectroscopy I: The Foundations

Tutorials in Vibrational Sum Frequency Generation Spectroscopy II: Designing a Broadband Vibrational Sum Frequency Generation Spectrometer

Tutorials in Vibrational Sum Frequency Generation Spectroscopy III: Collecting, Processing, and Analysing VSFG Spectra


March 2022 - Paper in the Journal of Physical Chemistry Letters

Katinka Holler, Mette Rasmussen, and Tobias Weidner have published a paper about the structure of proteins in gecko feet.

Structure of Keratins in Adhesive Gecko Setae Determined by Near-Edge X-ray Absorption Fine Structure Spectromicroscopy


February 2022

Khezar Hayat Saeed joined our group as a postdoc. Welcome Khezar!

SurfLabs forskning støttes af:

  • Carlsbergfondet
  • Danish Hydrocarbon Research and Technology Centre (DHRTC)
  • Det Europæiske Forskningsråd (ERC)
  • Danmarks Frie Forskningsfond - Natur og Univers (FNU)
  • Lundbeckfonden
  • Novo Nordisk Fonden
  • Villum Fonden